Towards Robust Numerical Question Answering： Diagnosing Numerical Capabilities of NLP Systems

Jialiang Xu ${ }^{1}$ ，Mengyu Zhou ${ }^{2}$ ，Xinyi He ${ }^{3}$ ，Shi Han²，Dongmei Zhang ${ }^{2}$ ${ }^{1}$ University of Illinois at Urbana－Champaign ${ }^{2}$ Microsoft Research ${ }^{3}$ Xi＇an Jiaotong University jx17＠illinois．edu，hxyhxy＠stu．xjtu．edu．cn，\｛mezho，shihan，dongmeiz\}@microsoft.com

Abstract

TL；DR

Experiments

Experiment Settings

Atrack：to construct a chalienge set to evaluate
corresponding numerical capability of existing systems Defense：to investigate to the extent to which performance drops can be alleviated by using the perturbations as a data augmentation approach．

Dataset and Systems
In this paper，we used ASDiv－a［3］，DROP［4］，and TATQA ［5］as our Numerical Question Answering datasets．For TATQA－a，the numerical subsets of them．The statistics of these datasets are shown below．

DNC Framework

Overview

Two stages：Numerical Parsing，Semantic Parsing Four capabilities：Numerical Detection，Number Value Understanding，Operand Selection，Operation Reasoning Eight perturbations：Language，Type，Noise，Distribution， Verbosity，Extra，Logic，Order

Overview of DNC Framework．The process of Numerical QA solving is divided into two logical stages．Four capabilities are required to complete the stages，each maps to two perturbations
Perturbations can be applied to appropriate train／validation／test splits of Numerical QA datasets under Attack or Defense Setting． Models of the NLP systems are trained and then evaluated on the perturbed datasets as a diagnosis of their numerical capabilities．

Perturbation Examples

Examples of DNC Perturbations and Corresponding Predictions by T5．For each perturbation an example original and perturbed problem pair is shown．The rightmost column shows some error cases where T5 generates correct equation on the problem but fails on the perturbed．The ground truth equation of the perturbed problem is also provided after＂Expected＂

Formalization

Expected Behavior

When a perturbation does not confuse humans，it should not confuse a robust numerical QA systems either．I．e．

$$
f:(P, B) \rightarrow T \Leftrightarrow f:\left(P^{*}, B^{*}\right) \rightarrow T^{*}
$$

where f is a learned numerical QA system，P, B ，and T are the prompt，the body，and the target of the numerical QA problem，respectively．The asterisk $(\cdot)^{*}$ denotes the perturbed
version of the corresponding element．

Observed Discrepancy

Empirical results demonstrate a discrepancy between the Expected and the actual behavior．
Attack：systems trained on original data fails on perturbed． $f:\left(P_{\text {train }}, B_{\text {train }}\right) \rightarrow T_{\text {train }} \nRightarrow f:\left(P_{\text {test }}^{*}, B_{\text {test }}^{*}\right) \rightarrow T_{\text {test }}^{*}$ Defense：systems trained on perturbed data fails on perturbed． $f:\left(P_{\text {train }}^{*}, B_{\text {train }}^{*}\right) \rightarrow T_{\text {train }}^{*} \nRightarrow f:\left(P_{\text {test }}^{*}, B_{\text {test }}^{*}\right) \rightarrow T_{\text {test }}^{*}$ Thus，the systems are inferred to possess numerical capability weaknesses and have been picking up spurious correlations．

ILLINOIS

